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1  |  INTRODUCTION

The reproducibility of research findings is crucial to scien-
tific progress. One of the most important aspects of this is 

statistical power, which is defined as the probability that 
a statistical test correctly rejects the null hypothesis when 
it is false, or 1 − β, and is usually set at 0.8 (Cohen, 1988). 
Statistical power is important because low- powered studies 
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Abstract
The N1, Tb, and P2 components of the event- related potential (ERP) are thought 
to reflect the sequential processing of auditory stimuli in the human brain. 
Despite their extensive use in biological, cognitive, and clinical neuroscience, 
there are no guidelines for how to appropriately power ERP studies using these 
components. In the present study, we investigated how the number of trials, 
number of participants, effect magnitude, and study design influenced statisti-
cal power. Using Monte Carlo simulations of ERP data from a passive listening 
task, we determined the probability of finding a statistically significant effect in 
58,900 experiments repeated 1,000 times each. We found that as the number of 
trials, number of participants, and effect magnitude increased, so did statistical 
power. We also found that increasing the number of trials had a bigger effect 
on statistical power for within- subject designs than for between- subject designs, 
and that within- subject designs required a smaller number of trials and partici-
pants to provide the same level of statistical power for a given effect magnitude 
than between- subject designs. These results show that it is important to carefully 
consider these factors when designing ERP studies, rather than relying on tradi-
tion or anecdotal evidence. To improve the robustness and reproducibility of ERP 
research, we have built an online statistical power calculator (https://bradl eynja 
ck.shiny apps.io/ErpPo werCa lculator), which we hope will allow researchers to 
estimate the statistical power of previous studies, as well as help them design 
appropriately- powered studies in the future.
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yield more false positives (Type- I error) and false nega-
tives (Type- II error) than high- powered studies (Button 
et al., 2013; Ioannidis, 2005; Ioannidis et al., 2011; Stern & 
Davey Smith, 2001). That is, statistical power determines 
the level of confidence (or lack thereof) one can have in 
the results of a study. Unfortunately, there are growing 
concerns that most of the scientific literature might be 
false due to a lack of statistical power (Ioannidis, 2005), 
and that this issue has contaminated the neuroscien-
tific literature as well (Button et al.,  2013; Smaldino & 
McElreath, 2016). Consistent with this concern, Clayson 
et al.  (2019) estimated that only 15% of studies using 
event- related potentials (ERPs) were appropriately pow-
ered, and Larson and Carbine  (2017) estimated that the 
majority of ERP studies do not report statistical power 
calculations or the information needed for others to calcu-
late it themselves. These findings question the reproduc-
ibility of ERP research. To rectify this issue, researchers 
have begun to investigate how factors such as the number 
of trials, number of participants, effect magnitude, and 
study design influences the statistical power of ERP stud-
ies (Boudewyn et al., 2018; Gibney et al., 2020; Jensen & 
MacDonald, 2023; Ngiam et al., 2021). The aim of the pre-
sent study was to investigate how these factors influence 
the statistical power of ERP studies using the N1, Tb, and 
P2 components.

The question of how many trials and participants are 
needed for an appropriately powered ERP study has been 
a topic of discussion for decades (Keil et al., 2014; Picton 
et al., 2000; Pivik et al., 1993). Most of this discussion has 
focussed on deciding the number of participants; however, 
there are no formal guidelines for deciding the number of 
trials, and it is likely that most researchers rely on tradi-
tion or anecdotal evidence (Luck, 2014). One data- driven 
approach has been to randomly sample a subset of trials 
from a larger dataset and then to quantify the similarities 
between the components of the resulting waveforms. This 
process is then repeated many times to determine the min-
imum number of trials required to obtain a component 
that is as reliable as the component from the larger data-
set (Cohen & Polich,  1997; Duncan et al.,  2009; Fischer 
et al.,  2017; Huffmeijer et al.,  2014; Larson et al.,  2010; 
Marco- Pallares et al., 2011; Olvet & Hajcak, 2009; Pontifex 
et al., 2010; Rietdijk et al., 2014; Segalowitz & Barnes, 1993; 
Steele et al., 2016; Thigpen et al., 2017). However, as noted 
by Gehring et al. (2012) and others, the goal of most ERP 
studies is not to determine whether a component is pres-
ent or not; rather, it is to determine whether a component 
differs between experimental conditions and/or groups. 
Furthermore, the range in which a component can be 
modulated by an independent variable is usually much 
smaller than the component itself (Luck, 2014), meaning 
that this approach cannot be used to determine statistical 

power. Therefore, it is crucial that researchers investigate 
how experimental factors influence statistical power.

This issue was recently addressed by Boudewyn 
et al. (2018). In their study, they systematically manipulated 
the number of trials, number of participants, effect mag-
nitude, and study design with Monte Carlo simulations of 
ERP data from an Eriksen flanker task, which they then re-
peated 1,000 times each. Using this approach, they were able 
to determine statistical power for the lateralized readiness 
potential (LRP), which is associated with the selection and 
preparation of a lateralized motor response (Eimer,  1998; 
Smulders & Miller,  2012; Vaughan et al.,  1968), and the 
error- related negativity (ERN), which is associated with an 
incorrect motor response (Falkenstein et al., 1990; Gehring 
et al., 1993; Gehring et al., 2012). A similar approach was 
used by Gibney et al.  (2020), who used a picture- viewing 
task to investigate the late positive potential (LPP), which is 
associated with emotional processing (Cacioppo et al., 1993; 
Hajcak et al.,  2012; Schupp et al.,  2000), and by Ngiam 
et al. (2021), who used a change- detection task to investigate 
the contralateral delay activity (CDA), which is associated 
with visual working memory (Luria et al.,  2016; Perez & 
Vogel, 2012; Vogel & Machizawa, 2004). This approach was 
also used by Jensen and MacDonald (2023), who used the 
ERP CORE resource (Kappenman et al.,  2021) to investi-
gate the LRP, ERN, and five other widely used components: 
the N170, which is associated with face perception (Bentin 
et al., 1996; Bötzel & Grüsser, 1989; Rossion & Jacques, 2012); 
the mismatch negativity (MMN), which is associated with 
oddball detection (Garrido et al., 2009; Näätänen et al., 1978; 
Näätänen & Kreegipuu, 1987); the N2pc, which is associated 
with selective attention (Luck, 2012; Luck & Hillyard, 1990, 
1994); the N400, which is associated with semantic pro-
cessing (Kutas & Federmeier, 2011; Kutas & Hillyard, 1980; 
Swaab et al.,  2012); and the P3, which is associated with 
decision- making (Chapman & Bragdon, 1964; Polich, 2007, 
2012). Separately, these studies found that as the number 
of trials, number of participants, and effect magnitude in-
creased, so did statistical power. They also found that in-
creasing the number of trials had a bigger effect on statistical 
power for within- subject designs than for between- subject 

Impact Statement

Using Monte Carlo simulations of ERP data from 
a passive listening task, we found that the num-
ber of trials, number of participants, effect mag-
nitude, and study design interacted to influence 
statistical power for the N1, Tb, and P2 compo-
nents. We hope that these results will improve the 
robustness and reproducibility of ERP research.
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designs, and that within- subject designs required a smaller 
number of trials and participants to provide the same level of 
statistical power for a given effect magnitude than between- 
subject designs. Even though these results are informative, 
these studies provided different recommendations for each 
of the different components. This is important because it 
suggests that specific recommendations for one component 
are unlikely to generalize to other components.

In the present study, we sought to determine statisti-
cal power for the N1, Tb, and P2 components of the ERP. 
These components are elicited by an auditory stimulus, 
they are observed one after the other in the ERP wave-
form, and they have their neural sources in increasingly 
higher cortical regions (Crowley & Colrain,  2004; Joos 
et al.,  2014; Näätänen & Picton,  1987; Woods,  1995). As 
such, they are thought to reflect the sequential process-
ing of auditory stimuli in the human brain (Picton, 2010). 
We chose these components because, unlike those used 
by Boudewyn et al.  (2018), Gibney et al.  (2020), Jensen 
and MacDonald (2023), and Ngiam et al. (2021), the N1, 
Tb, and P2 are typically smaller in amplitude, earlier in 
latency after stimulus onset, and are assumed to require 
more trials to isolate; thus, their characteristics are very 
different from those used in previous research. We also 
chose these components because they are widely used in 
biological and cognitive neuroscience to study perception 
(Mulert et al.,  2005), attention (Näätänen,  1992), learn-
ing (Tremblay et al., 2014), expertise (Shahin et al., 2003), 
and language (Steinhauer & Connolly,  2008), as well as 
in clinical neuroscience to study auditory development 
(Bishop et al.,  2011), hearing thresholds (Campbell & 
Muller- Gass, 2011), tinnitus (Lee et al., 2007), and schizo-
phrenia (Salisbury et al.,  2010). Despite their extensive 
use, there are no guidelines for how to appropriately 
power ERP studies using these components. To address 
this, we used Monte Carlo simulations of ERP data from 
a passive listening task to investigate how the number of 
trials, number of participants, effect magnitude, and study 
design influences the statistical power of the N1, Tb, and 
P2 components.

2  |  METHOD

2.1 | Participants

Fifty students from the Australian National University 
(ANU) participated in our experiment for course credit. 
All participants gave written informed consent prior to the 
experiment and reported having normal hearing in both 
ears. Mean age of the participants, 29 of whom were fe-
male and 45 of whom were right- handed, was 21 (SD = 2) 
years. The experiment was approved by the ANU Science 

and Medical Delegated Ethics Review Committee and 
was conducted in accordance with the ethical standards 
laid down in the Declaration of Helsinki (World Medical 
Association, 2013).

2.2 | Apparatus, stimuli, and procedure

Participants completed a passive listening task: they were 
instructed to ignore 1,000 identical sinusoidal tones pre-
sented binaurally through headphones (Audio- Technica 
ATH- M20x) while watching a silent film on a computer 
monitor (Dell U2415). The tones had a frequency of 
1,000 Hz, a duration of 100 ms including 5- ms rise and 
fall times, and an intensity of 75 dB SPL. The stimulus- 
onset asynchrony between any two tones randomly var-
ied between 1,000 and 2,000 ms (rectangular distribution, 
average of 1,500 ms). The films consisted of a selection 
of nature documentaries, were silent (the sound was 
muted), and did not contain subtitles. Stimulus presen-
tation was controlled by specially written Matlab scripts 
using the Psychophysics Toolbox (Brainard, 1997; Kleiner 
et al., 2007; Pelli, 1997). The task took about 25 minutes to 
complete.

2.3 | Electroencephalogram (EEG) 
acquisition

We recorded the EEG with a BioSemi ActiveTwo system 
using 64 Ag/AgCl active electrodes placed according to 
the extended 10– 20 system (FP1, FPz, FP2, AF7, AF3, 
AFz, AF4, AF8, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, 
FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, 
Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, 
CP6, TP8, P9, P7, P5, P3, P1, Pz, P2, P4, P6, P8, P10, PO7, 
PO3, POz, PO4, PO8, O1, Oz, O2, and Iz). We recorded the 
vertical electrooculogram (EOG) by placing an electrode 
above (we used FP1) and below the left eye and the hori-
zontal EOG by placing an electrode on the outer canthus 
of each eye. We also placed an electrode on the tip of the 
nose. The EEG was sampled at 1,024 Hz.

2.4 | EEG processing and region of 
interest (ROI) selection

We re- referenced the EEG data to the electrode on the tip 
of the nose, and we filtered the data using a half- amplitude 
0.1– 30 Hz phase- shift free Butterworth filter (12 dB/Oct 
slope), as well as a 50- Hz Notch filter. We extracted the 
epochs from −100 ms to 400 ms relative to sound onset, we 
corrected the epochs for eye- blink and movement artifacts 
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using the technique described in Gratton et al. (1983) and 
Miller et al. (1988), and we excluded all epochs with sig-
nals exceeding peak- to- peak amplitudes of 200 μV at any 
EEG channel. We baseline- corrected all epochs to their 
mean voltage from −100 to 0 ms, and we computed an 
ERP waveform for each participant from the remaining 
trials. On average, the waveform was computed from 
965 (SD = 27) artifact- free epochs. We computed a grand- 
average ERP waveform, and we analyzed the N1 at fronto- 
central (Fz, FCz, and Cz) electrodes in the time- window of 
84– 124 ms, the Tb at bilateral temporal (T7 and T8) elec-
trodes in the time- window of 124– 164 ms, and the P2 at 
central (FCz, Cz, and CPz) electrodes in the time- window 
of 151– 191 ms. We chose these electrodes to be consist-
ent with those in the literature (Crowley & Colrain, 2004; 
Näätänen & Picton,  1987; Woods,  1995), and we chose 
these time- windows by centering a 40- ms time- window 
around each peak on the grand- averaged ERP waveform 
(Luck & Gaspelin, 2017).

2.5 | Quantifying the noise

We used three techniques for quantifying the noise in 
our data. First, we computed amplitude density using 
the Fast Fourier Transform (FFT). Specifically, after re- 
referencing and filtering the data, we segmented the data 
into 5- s epochs with 50% overlap, we excluded all epochs 
with signals exceeding peak- to- peak amplitudes of 200 μV 
at any EEG channel, and we computed the amplitude 
density at each frequency from 1– 100 Hz in 0.125 Hz steps 
using the FFT. The amplitude density was averaged across 
epochs, electrodes, and participants. Figure 1 shows the 
grand- averaged amplitude density spectrum. Second, we 
used the plus– minus averaging technique described in 
Schimmel (1967). This technique removes the ERP signal 
while leaving the noise by subtracting the ERP for odd- 
numbered trials from the ERP for even- numbered trials 
for each participant. Third, we used the standardized 
measurement error (SME) technique described in Luck 
et al. (2020). This technique is similar to the standard error 
of measurement, except that it can be applied to a specific 
time- window for each participant, yielding a measure of 
precision, and then aggregated across participants to pro-
vide a measure of the quality of the data.

2.6 | Monte Carlo simulation and 
statistical analysis

We used Monte Carlo methods to simulate a large num-
ber of separate experiments with different parameters by 
randomly sampling (with replacement) a subset of trials 

and participants from the dataset described above. Each 
experiment included a specific number of trials, which 
ranged from 20– 1,000 in increments of 20 trials; number 
of participants, which ranged from 10– 100 in increments 
of five participants; and effect magnitude, which ranged 
from 0– 3 in increments of 0.1 μV, and used either a within-
  or between- subject design. Combining these parameters 
led to a total of 58,900 experiments, each of which was 
repeated 1000 times. For the experiments using a within- 
subject design, we sampled twice the number of trials 
from each participant to simulate two experimental condi-
tions, we added half of the effect magnitude to one condi-
tion and subtracted half of the effect magnitude from the 
other condition, and we tested for a statistically significant 
(α = .05) effect between the two conditions at the N1, Tb, 
and P2 using separate paired- samples t- tests (two- tailed). 
For the experiments using a between- subject design, we 
sampled twice the number of participants to simulate two 
experimental groups, we added half of the effect magni-
tude to one group and subtracted half of the effect magni-
tude from the other group, and we tested for a statistically 
significant effect between the two groups at the N1, Tb, 
and P2 using separate independent- samples t- tests (two- 
tailed). This approach is ideal for our purpose because it 
combines real ERP data with artificially induced experi-
mental effects. To calculate statistical power, we divided 
the number of significant experiments for a given set of 
parameters by the total number of repetitions (i.e., 1,000).

3  |  RESULTS

3.1 | ERP and noise waveforms

Figure  2a shows the grand- averaged ERP waveform as 
well as the individual and grand- averaged plus- minus 
waveforms at fronto- central electrodes. Consistent 
with the N1 literature (Näätänen & Picton,  1987; 

F I G U R E  1  Amplitude density as a function of frequency, 
calculated from FFTs of data averaged across epochs, electrodes, 
and participants.
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Woods, 1995), the grand- averaged ERP waveform shows 
a negative- going deflection starting at about 75 ms, peak-
ing at 104 ms, and returning to baseline at about 135 ms. 
Figure  2b shows the waveforms at bilateral temporal 
electrodes. Consistent with the Tb literature (Näätänen 
& Picton,  1987; Woods,  1995), the grand- averaged ERP 
waveform shows a negative- going deflection starting at 
about 120 ms, peaking at 144 ms, and returning to baseline 
at about 160 ms. Figure 2c shows the waveforms at central 
electrodes. Consistent with the P2 literature (Crowley & 
Colrain, 2004), the grand- averaged ERP waveform shows 
a negative- going deflection starting at about 135 ms, peak-
ing at 171 ms, and returning to baseline at about 230 ms. 
The grand- averaged plus- minus waveforms at fronto- 
central, bilateral temporal, and central electrodes were 
approximately 0 for the duration of the epoch, indicating 
that the ERP signals were successfully removed by the 
plus- – minus averaging technique, leaving only the noise 
(Schimmel, 1967). The SMEs for the N1, Tb, and P2 time- 
windows were 0.59, 0.55, and 0.71, respectively, which 
were much smaller than the SDs, 1.64, 1.14, and 2.01, 
respectively, indicating that the contribution of measure-
ment error to the observed variability across participants 
was not as great as the contribution of true differences 
among participants (Luck et al.,  2020). That is, the dif-
ferences across individual participants is driven by true 

individual differences, rather than by measurement error 
or poor quality of data.

3.2 | N1 simulations

Figure  3a shows the probability of obtaining a statisti-
cally significant N1 effect for within- subject designs. 
Consistent with previous research (Boudewyn et al., 2018; 
Gibney et al.,  2020; Jensen & MacDonald,  2023; Ngiam 
et al., 2021), we found that the number of trials, number 
of participants, effect magnitude, and study design inter-
acted to influence statistical power. For instance, for an 
effect magnitude of 0.5 μV, if there were 300 trials, then 75 
participants were needed to obtain appropriate statistical 
power (which we defined as 0.8, as is the norm in neuro-
science; Button et al., 2013; Smaldino & McElreath, 2016), 
and if the number of trials was doubled to 600, then the 
number of participants was reduced to 40. For an effect 
magnitude of 1 μV, if there were 200 trials, then 30 par-
ticipants were needed to obtain appropriate statistical 
power; if the number of trials was doubled to 400, then 
the number of participants was reduced to 15; and if the 
number of trials was doubled again to 800, then the num-
ber of participants was reduced to 10. For an effect magni-
tude of 1.5 μV, if there were 100 trials, then 25 participants 

F I G U R E  2  ERP waveforms and 
noise. The left panels show the grand- 
averaged ERP waveforms at (a) fronto- 
central (Fz, FCz, and Cz), (b) bilateral 
temporal (T7 and T8), and (c) central 
electrodes (FCz, Cz, and CPz), showing 
time (ms) on the x- axis, with 0 indicating 
sound onset, and voltage (μV) on the 
y- axis, with positive voltages plotted 
upwards. The gray bars show the (a) N1, 
(b) Tb, and (c) P2 time- windows. The 
right panels show the individual and 
grand- averaged plus- minus waveforms at 
(a) fronto- central, (b) bilateral temporal, 
and (c) central electrodes.
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were needed to obtain appropriate statistical power; if the 
number of trials was doubled to 200, then the number of 
participants was reduced to 15; and if the number of trials 
was doubled again to 400, then the number of participants 
was reduced to 10. For an effect magnitude of 3 μV, if there 
were 40 trials, then 20 participants were needed to obtain 
appropriate statistical power, and if the number of trials 
was doubled to 80, then the number of participants was 
reduced to 10.

Figure 3b shows the probability of obtaining a statis-
tically significant N1 effect for between- subject designs. 
For an effect magnitude of 0.5 μV, even 1,000 trials and 
100 participants were insufficient to obtain appropri-
ate statistical power. For an effect magnitude of 1 μV, if 
there were 200 trials, then 70 participants were needed 
to obtain appropriate statistical power; if the number of 
trials was doubled to 400, then the number of partici-
pants was reduced to 60; and if the number of trials was 

F I G U R E  3  N1 simulations. The 
distribution plots show the probability 
of obtaining a statistically significant 
(α = .05) N1 effect as a function of the 
number of trials and participants for effect 
magnitudes of 0.5, 1, 1.5, and 3 μV, which 
are typical of those reported in the N1 
literature, for (a) within-  and (b) between- 
subject designs.

0.5 µV

200 400 600 800 1000
Number of Trials

100

N
um

be
r o

f P
ar

tic
ip

an
ts

1.0 µV

200 400 600 800 1000

1.5 µV

200 400 600 800 1000

3.0 µV

200 400 600 800 1000

80

60

40

20

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

0.5 µV

200 400 600 800 1000

100
1.0 µV

200 400 600 800 1000

1.5 µV

200 400 600 800 1000

3.0 µV

200 400 600 800 1000

80

60

40

20

100

80

60

40

20

100

80

60

40

20

100

80

60

40

20

0 0.2 0.4 0.6 0.8 1
Statistical Power

(a)

(b)

 14698986, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/psyp.14363 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [31/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



   | 7 of 14HALL et al.

doubled again to 800, then the number of participants 
was reduced to 50. For an effect magnitude of 1.5 μV, if 
there were 100 trials, then 50 participants were needed 
to obtain appropriate statistical power; if the number of 
trials was doubled to 200, then the number of partici-
pants was reduced to 35; and if the number of trials was 
doubled again to 400, then the number of participants 
was reduced to 25. For an effect magnitude of 3 μV, if 
there were 40 trials, then 25 participants were needed to 
obtain appropriate statistical power, and if the number 
of trials was doubled to 80, then the number of partici-
pants was reduced to 15.

3.3 | Tb simulations

Figure 4a shows the probability of obtaining a statistically 
significant Tb effect for within- subject designs. For an ef-
fect magnitude of 0.5 μV, if there were 300 trials, then 65 
participants were needed to obtain appropriate statistical 
power, and if the number of trials was doubled to 600, then 
the number of participants was reduced to 35. For an effect 
magnitude of 1 μV, if there were 200 trials, then 25 partici-
pants were needed to obtain appropriate statistical power; 
if the number of trials was doubled to 400, then the number 
of participants was reduced to 15; and if the number of tri-
als was doubled again to 800, then the number of partici-
pants was reduced to 10. For an effect magnitude of 1.5 μV, 
if there were 100 trials, then 25 participants were needed 
to obtain appropriate statistical power; if the number of tri-
als was doubled to 200, then the number of participants 
was reduced to 15; and if the number of trials was doubled 
again to 400, then the number of participants was reduced 
to 10. For an effect magnitude of 3 μV, if there were 40 tri-
als, then 15 participants were needed to obtain appropriate 
statistical power, and if the number of trials was doubled 
to 80, then the number of participants was reduced to 10.

Figure 4b shows the probability of obtaining a statis-
tically significant Tb effect for between- subject designs. 
For an effect magnitude of 0.5 μV, 880 trials and 100 
participants were needed to obtain appropriate statisti-
cal power, but increasing the number of trials to 1,000 
did not reduce the number of participants. For an ef-
fect magnitude of 1 μV, if there were 200 trials, then 45 
participants were needed to obtain appropriate statisti-
cal power; if the number of trials was doubled to 400, 
then the number of participants was reduced to 35; and 
if the number of trials was doubled again to 800, then 
the number of participants was reduced to 30. For an 
effect magnitude of 1.5 μV, if there were 100 trials, then 
30 participants were needed to obtain appropriate statis-
tical power; if the number of trials was doubled to 200, 
then the number of participants was reduced to 20; and 

if the number of trials was doubled again to 400, then 
the number of participants was reduced to 15. For an 
effect magnitude of 3 μV, if there were 40 trials, then 20 
participants were needed to obtain appropriate statisti-
cal power, and if the number of trials was doubled to 80, 
then the number of participants was reduced to 15.

3.4 | P2 simulations

Figure 5a shows the probability of obtaining a statistically 
significant P2 effect for within- subject designs. For an ef-
fect magnitude of 0.5 μV, if there were 300 trials, then more 
than 100 participants were needed to obtain appropriate 
statistical power, and if the number of trials was doubled 
to 600, then the number of participants was reduced to 55. 
For an effect magnitude of 1 μV, if there were 200 trials, 
then 45 participants were needed to obtain appropriate 
statistical power; if the number of trials was doubled to 
400, then the number of participants was reduced to 20; 
and if the number of trials was doubled again to 800, then 
the number of participants was reduced to 10. For an ef-
fect magnitude of 1.5 μV, if there were 100 trials, then 40 
participants were needed to obtain appropriate statistical 
power; if the number of trials was doubled to 200, then the 
number of participants was reduced to 20; and if the num-
ber of trials was doubled again to 400, then the number of 
participants was reduced to 15. For an effect magnitude 
of 3 μV, if there were 40 trials, then 25 participants were 
needed to obtain appropriate statistical power, and if the 
number of trials was doubled to 80, then the number of 
participants was reduced to 15.

Figure 5b shows the probability of obtaining a statis-
tically significant P2 effect for between- subject designs. 
For an effect magnitude of 0.5 μV, even 1,000 trials and 
100 participants were insufficient to obtain appropri-
ate statistical power. For an effect magnitude of 1 μV, if 
there were 200 trials, then 100 participants were needed 
to obtain appropriate statistical power; if the number of 
trials was doubled to 400, then the number of partici-
pants was reduced to 80; and if the number of trials was 
doubled again to 800, then the number of participants 
was reduced to 75. For an effect magnitude of 1.5 μV, if 
there were 100 trials, then 65 participants were needed 
to obtain appropriate statistical power; if the number of 
trials was doubled to 200, then the number of partici-
pants was reduced to 50; and if the number of trials was 
doubled again to 400, then the number of participants 
was reduced to 40. For an effect magnitude of 3 μV, if 
there were 40 trials, then 30 participants were needed to 
obtain appropriate statistical power, and if the number 
of trials was doubled to 80, then the number of partici-
pants was reduced to 20.
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4  |  DISCUSSION

In the present study, we sought to determine statistical 
power for the N1, Tb, and P2 components of the ERP. 
To accomplish this, we used Monte Carlo simulations 
of ERP data from a passive listening task to systemati-
cally manipulate the number of trials, number of par-
ticipants, effect magnitude, and study design, resulting 
in 58,900 experiments which we then repeated 1,000 

times each. Consistent with Boudewyn et al.  (2018), 
Gibney et al.  (2020), Jensen and MacDonald  (2023), 
and Ngiam et al.  (2021), we found that the number of 
trials, number of participants, effect magnitude, and 
study design interacted to influence statistical power in 
at least three ways. First, we found that as the number 
of trials, number of participants, and effect magnitude 
increased, so did statistical power. This can be seen in 
Figure  3a, where statistical power for a given number 

F I G U R E  4  Tb simulations. The 
distribution plots show the probability 
of obtaining a statistically significant 
(α = .05) Tb effect as a function of the 
number of trials and participants for effect 
magnitudes of 0.5, 1, 1.5, and 3 μV, which 
are typical of those reported in the Tb 
literature, for (a) within-  and (b) between- 
subject designs.
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of trials, number of participants, and effect magnitude 
increased as any one of these factors also increased. This 
is an important message for the neuroscience commu-
nity because it is common for researchers to estimate 
(usually by relying on tradition or anecdotal evidence; 
Luck, 2014) the statistical power of a study based on its 
number of participants, such that studies with a small 
number of participants are assumed to have low sta-
tistical power, whereas studies with a large number of 

participants are assumed to have high statistical power. 
However, our results show that it is possible for a study 
with a small number of participants to have high statis-
tical power if it also has a large number of trials and/or a 
large effect magnitude and that it is possible for a study 
with a large number of participants to have low statis-
tical power if it also has a small number of trials and/
or a small effect magnitude. That is, our results show 
how studies with a small number of participants can, on 

F I G U R E  5  P2 simulations. The 
distribution plots show the probability 
of obtaining a statistically significant 
(α = .05) P2 effect as a function of the 
number of trials and participants for effect 
magnitudes of 0.5, 1, 1.5, and 3 μV, which 
are typical of those reported in the P2 
literature, for (a) within-  and (b) between- 
subject designs.
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some occasions, have more statistical power than stud-
ies with a large number of participants.

Second, we found that increasing the number of trials 
had a bigger effect on statistical power for within- subject 
designs than for between- subject designs. This can be seen 
by comparing Figure 3a with the corresponding plots in 
Figure 3b, with the former tending to reach the minimum 
number of participants more often than the latter, espe-
cially for effect magnitudes smaller than or equal to 1.5 μV. 
Third, we found that within- subject designs required a 
smaller number of trials and participants to provide the 
same level of statistical power for a given effect magni-
tude than between- subject designs. This can be seen by 
comparing Figure  3a with the corresponding plots in 
Figure 3b, with the former tending to provide more exam-
ples of different combinations of the number of trials and 
participants in which statistical power is equal to or larger 
than 0.8 than the latter, especially for effect magnitudes 
smaller than or equal to 1.5 μV. Importantly, our charac-
terization of the results is not specific to Figure 3, which 
shows the N1 simulations; we can see the same patterns 
in Figures 4 and 5, which show the Tb and P2 simulations, 
respectively. Similar to Boudewyn et al. (2018), we suspect 
that the reason for the differences between within-  and 
between- subject designs is the main source of variance: 
if the main source of variance is the number of trials, as 
is often the case in within- subject designs, then increas-
ing the number of trials should decrease the variance and 
therefore increase statistical power. If, however, the main 
source of variance is individual differences, as is often the 
case in between- subject designs, then increasing the num-
ber of trials should have a smaller effect on decreasing the 
variance and increasing statistical power.

As mentioned above, the key finding of the present 
study is that the number of trials, number of partici-
pants, effect magnitude, and study design interacted to 
influence statistical power. Consistent with previous re-
search (Boudewyn et al., 2018; Gibney et al., 2020; Jensen 
& MacDonald, 2023; Ngiam et al., 2021), this shows that 
there is no single answer to the question of how many tri-
als or participants are needed for an appropriately pow-
ered ERP study. Instead, the number of trials required to 
obtain appropriate statistical power depends on the num-
ber of participants, effect magnitude, and study design. 
Similarly, the number of participants required to obtain 
appropriate statistical power depends on the number of 
trials, effect magnitude, and study design. Intriguingly, it 
appears as though the statistical power of an ERP study 
is also influenced by the component of interest. By con-
solidating the results of Boudewyn et al.  (2018), Gibney 
et al.  (2020), Jensen and MacDonald  (2023), and Ngiam 
et al. (2021), we noticed that they provided different rec-
ommendations for each of the different components. A 

key difference between these studies, which could ex-
plain the different recommendations, is that they investi-
gated different components with different characteristics. 
Consistent with this, in the present study, we found that 
the Tb required a marginally smaller number of trials 
and participants than the N1 for a given effect magnitude 
and study design, which required a marginally smaller 
number of trials and participants than the P2 for a given 
effect magnitude and study design. This can be seen by 
comparing Figures  3- 5, which show the N1, Tb, and P2 
simulations, respectively. This suggests that our recom-
mendations, as well as those of Boudewyn et al.  (2018), 
Gibney et al. (2020), Jensen and MacDonald (2023), and 
Ngiam et al. (2021), might not generalize to other compo-
nents. Because of this, we strongly encourage researchers 
to adopt our data- driven approach to estimating statistical 
power for their component(s) of interest or use alternative 
methods for estimating statistical power, such as Baker 
et al.'s (2021) method, until data for their component(s) of 
interest become available.

Even though there is no single answer to the ques-
tion of how many trials or participants are needed for an 
appropriately powered ERP study, our results might be 
useful for improving the robustness and reproducibility 
of ERP research (Garrett- Ruffin et al., 2021; Kappenman 
& Keil, 2017; Larson & Moser, 2017; Pavlov et al., 2021). 
To facilitate this, we have built an online statistical 
power calculator (https://bradl eynja ck.shiny apps.io/
ErpPo werCa lculator). We encourage researchers in-
terested in the N1, Tb, and/or P2 to use this calculator 
to estimate the statistical power of previous studies, as 
well as help them design appropriately powered studies 
in the future. Of course, it is important to acknowledge 
that even though α = .05 is the norm in neuroscience 
(Button et al., 2013; Smaldino & McElreath, 2016), our 
recommendations will not apply to experiments using a 
different threshold. To help researchers using a differ-
ent threshold (Benjamin et al., 2018; Lakens et al., 2018; 
Maier & Lakens, 2022; Miller & Ulrich, 2019), our cal-
culator also estimates statistical power when α = .01, 
.005, and .001. Relatedly, our recommendations should 
be treated with some caution as they might not gener-
alize to situations that are significantly different to our 
dataset. For example, it is unclear whether our rec-
ommendations will apply to these components when 
elicited by different populations, stimuli, or paradigms 
(Kappenman & Luck,  2017; Picton,  2010; Puce & 
Hämäläinen, 2017), recorded in different environments 
or by different EEG or electrode systems (Kappenman 
& Luck, 2010; Laszlo et al., 2014), or computed by dif-
ferent processing and analytical pipelines (Clayson 
et al.,  2021; Sandre et al.,  2020). Despite these limita-
tions, our recommendations are more informative for 
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estimating statistical power than relying on tradition or 
anecdotal evidence, and as such, may provide a platform 
for the development of psychological theory (Eronen & 
Bringmann, 2021; Oberauer & Lewandowsky, 2019) and 
ERP biomarkers of clinical disorders (Luck et al., 2011).
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