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trials, number of participants, and effect magnitude increased, so did statistical
power. We also found that increasing the number of trials had a bigger effect
on statistical power for within-subject designs than for between-subject designs,
and that within-subject designs required a smaller number of trials and partici-
pants to provide the same level of statistical power for a given effect magnitude
than between-subject designs. These results show that it is important to carefully
consider these factors when designing ERP studies, rather than relying on tradi-
tion or anecdotal evidence. To improve the robustness and reproducibility of ERP
research, we have built an online statistical power calculator (https://bradleynja
ck.shinyapps.io/ErpPowerCalculator), which we hope will allow researchers to
estimate the statistical power of previous studies, as well as help them design
appropriately-powered studies in the future.
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1 | INTRODUCTION statistical power, which is defined as the probability that
a statistical test correctly rejects the null hypothesis when
The reproducibility of research findings is crucial to scien- it is false, or 1—f3, and is usually set at 0.8 (Cohen, 1988).

tific progress. One of the most important aspects of this is Statistical power is important because low-powered studies
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yield more false positives (Type-1 error) and false nega-
tives (Type-II error) than high-powered studies (Button
et al., 2013; Ioannidis, 2005; Ioannidis et al., 2011; Stern &
Davey Smith, 2001). That is, statistical power determines
the level of confidence (or lack thereof) one can have in
the results of a study. Unfortunately, there are growing
concerns that most of the scientific literature might be
false due to a lack of statistical power (Ioannidis, 2005),
and that this issue has contaminated the neuroscien-
tific literature as well (Button et al., 2013; Smaldino &
McElreath, 2016). Consistent with this concern, Clayson
et al. (2019) estimated that only 15% of studies using
event-related potentials (ERPs) were appropriately pow-
ered, and Larson and Carbine (2017) estimated that the
majority of ERP studies do not report statistical power
calculations or the information needed for others to calcu-
late it themselves. These findings question the reproduc-
ibility of ERP research. To rectify this issue, researchers
have begun to investigate how factors such as the number
of trials, number of participants, effect magnitude, and
study design influences the statistical power of ERP stud-
ies (Boudewyn et al., 2018; Gibney et al., 2020; Jensen &
MacDonald, 2023; Ngiam et al., 2021). The aim of the pre-
sent study was to investigate how these factors influence
the statistical power of ERP studies using the N1, Tb, and
P2 components.

The question of how many trials and participants are
needed for an appropriately powered ERP study has been
a topic of discussion for decades (Keil et al., 2014; Picton
et al., 2000; Pivik et al., 1993). Most of this discussion has
focussed on deciding the number of participants; however,
there are no formal guidelines for deciding the number of
trials, and it is likely that most researchers rely on tradi-
tion or anecdotal evidence (Luck, 2014). One data-driven
approach has been to randomly sample a subset of trials
from a larger dataset and then to quantify the similarities
between the components of the resulting waveforms. This
process is then repeated many times to determine the min-
imum number of trials required to obtain a component
that is as reliable as the component from the larger data-
set (Cohen & Polich, 1997; Duncan et al., 2009; Fischer
et al.,, 2017; Huffmeijer et al., 2014; Larson et al., 2010;
Marco-Pallares et al., 2011; Olvet & Hajcak, 2009; Pontifex
etal., 2010; Rietdijk et al., 2014; Segalowitz & Barnes, 1993;
Steele et al., 2016; Thigpen et al., 2017). However, as noted
by Gehring et al. (2012) and others, the goal of most ERP
studies is not to determine whether a component is pres-
ent or not; rather, it is to determine whether a component
differs between experimental conditions and/or groups.
Furthermore, the range in which a component can be
modulated by an independent variable is usually much
smaller than the component itself (Luck, 2014), meaning
that this approach cannot be used to determine statistical
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Using Monte Carlo simulations of ERP data from
a passive listening task, we found that the num-
ber of trials, number of participants, effect mag-
nitude, and study design interacted to influence
statistical power for the N1, Tb, and P2 compo-
nents. We hope that these results will improve the
robustness and reproducibility of ERP research.

power. Therefore, it is crucial that researchers investigate
how experimental factors influence statistical power.

This issue was recently addressed by Boudewyn
et al. (2018). In their study, they systematically manipulated
the number of trials, number of participants, effect mag-
nitude, and study design with Monte Carlo simulations of
ERP data from an Eriksen flanker task, which they then re-
peated 1,000 times each. Using this approach, they were able
to determine statistical power for the lateralized readiness
potential (LRP), which is associated with the selection and
preparation of a lateralized motor response (Eimer, 1998;
Smulders & Miller, 2012; Vaughan et al., 1968), and the
error-related negativity (ERN), which is associated with an
incorrect motor response (Falkenstein et al., 1990; Gehring
et al., 1993; Gehring et al., 2012). A similar approach was
used by Gibney et al. (2020), who used a picture-viewing
task to investigate the late positive potential (LPP), which is
associated with emotional processing (Cacioppo et al., 1993;
Hajcak et al., 2012; Schupp et al., 2000), and by Ngiam
etal. (2021), who used a change-detection task to investigate
the contralateral delay activity (CDA), which is associated
with visual working memory (Luria et al., 2016; Perez &
Vogel, 2012; Vogel & Machizawa, 2004). This approach was
also used by Jensen and MacDonald (2023), who used the
ERP CORE resource (Kappenman et al., 2021) to investi-
gate the LRP, ERN, and five other widely used components:
the N170, which is associated with face perception (Bentin
etal., 1996; Botzel & Griisser, 1989; Rossion & Jacques, 2012);
the mismatch negativity (MMN), which is associated with
oddball detection (Garrido et al., 2009; Nditinen et al., 1978;
Nédtdanen & Kreegipuu, 1987); the N2pc, which is associated
with selective attention (Luck, 2012; Luck & Hillyard, 1990,
1994); the N400, which is associated with semantic pro-
cessing (Kutas & Federmeier, 2011; Kutas & Hillyard, 1980;
Swaab et al., 2012); and the P3, which is associated with
decision-making (Chapman & Bragdon, 1964; Polich, 2007,
2012). Separately, these studies found that as the number
of trials, number of participants, and effect magnitude in-
creased, so did statistical power. They also found that in-
creasing the number of trials had a bigger effect on statistical
power for within-subject designs than for between-subject
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designs, and that within-subject designs required a smaller
number of trials and participants to provide the same level of
statistical power for a given effect magnitude than between-
subject designs. Even though these results are informative,
these studies provided different recommendations for each
of the different components. This is important because it
suggests that specific recommendations for one component
are unlikely to generalize to other components.

In the present study, we sought to determine statisti-
cal power for the N1, Tb, and P2 components of the ERP.
These components are elicited by an auditory stimulus,
they are observed one after the other in the ERP wave-
form, and they have their neural sources in increasingly
higher cortical regions (Crowley & Colrain, 2004; Joos
et al., 2014; Niidtidnen & Picton, 1987; Woods, 1995). As
such, they are thought to reflect the sequential process-
ing of auditory stimuli in the human brain (Picton, 2010).
We chose these components because, unlike those used
by Boudewyn et al. (2018), Gibney et al. (2020), Jensen
and MacDonald (2023), and Ngiam et al. (2021), the N1,
Tb, and P2 are typically smaller in amplitude, earlier in
latency after stimulus onset, and are assumed to require
more trials to isolate; thus, their characteristics are very
different from those used in previous research. We also
chose these components because they are widely used in
biological and cognitive neuroscience to study perception

ing (Tremblay et al., 2014), expertise (Shahin et al., 2003),
and language (Steinhauer & Connolly, 2008), as well as
in clinical neuroscience to study auditory development
(Bishop et al., 2011), hearing thresholds (Campbell &
Muller-Gass, 2011), tinnitus (Lee et al., 2007), and schizo-
phrenia (Salisbury et al., 2010). Despite their extensive
use, there are no guidelines for how to appropriately
power ERP studies using these components. To address
this, we used Monte Carlo simulations of ERP data from
a passive listening task to investigate how the number of
trials, number of participants, effect magnitude, and study
design influences the statistical power of the N1, Tb, and
P2 components.

2 | METHOD

2.1 | Participants

Fifty students from the Australian National University
(ANU) participated in our experiment for course credit.
All participants gave written informed consent prior to the
experiment and reported having normal hearing in both
ears. Mean age of the participants, 29 of whom were fe-
male and 45 of whom were right-handed, was 21 (SD=2)
years. The experiment was approved by the ANU Science
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and Medical Delegated Ethics Review Committee and
was conducted in accordance with the ethical standards
laid down in the Declaration of Helsinki (World Medical
Association, 2013).

2.2 | Apparatus, stimuli, and procedure
Participants completed a passive listening task: they were
instructed to ignore 1,000 identical sinusoidal tones pre-
sented binaurally through headphones (Audio-Technica
ATH-M20x) while watching a silent film on a computer
monitor (Dell U2415). The tones had a frequency of
1,000Hz, a duration of 100ms including 5-ms rise and
fall times, and an intensity of 75dB SPL. The stimulus-
onset asynchrony between any two tones randomly var-
ied between 1,000 and 2,000 ms (rectangular distribution,
average of 1,500ms). The films consisted of a selection
of nature documentaries, were silent (the sound was
muted), and did not contain subtitles. Stimulus presen-
tation was controlled by specially written Matlab scripts
using the Psychophysics Toolbox (Brainard, 1997; Kleiner
et al., 2007; Pelli, 1997). The task took about 25 minutes to
complete.

2.3 | Electroencephalogram (EEG)
acquisition

We recorded the EEG with a BioSemi ActiveTwo system
using 64 Ag/AgCl active electrodes placed according to
the extended 10-20 system (FP1, FPz, FP2, AF7, AF3,
AFz, AF4, AFS, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7,
FCs, FC3, FC1, FCz, FC2, FC4, FCe6, FT8, T7, C5, C3, C1,
Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4,
CPe6, TP8, P9, P7, P5, P3, P1, Pz, P2, P4, P6, P8, P10, PO7,
PO3, POz, PO4, POS, 01, Oz, 02, and 1z). We recorded the
vertical electrooculogram (EOG) by placing an electrode
above (we used FP1) and below the left eye and the hori-
zontal EOG by placing an electrode on the outer canthus
of each eye. We also placed an electrode on the tip of the
nose. The EEG was sampled at 1,024 Hz.

2.4 | EEG processing and region of
interest (ROI) selection

We re-referenced the EEG data to the electrode on the tip
of the nose, and we filtered the data using a half-amplitude
0.1-30Hz phase-shift free Butterworth filter (12dB/Oct
slope), as well as a 50-Hz Notch filter. We extracted the
epochs from —100 ms to 400 ms relative to sound onset, we
corrected the epochs for eye-blink and movement artifacts
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using the technique described in Gratton et al. (1983) and
Miller et al. (1988), and we excluded all epochs with sig-
nals exceeding peak-to-peak amplitudes of 2001V at any
EEG channel. We baseline-corrected all epochs to their
mean voltage from —100 to Oms, and we computed an
ERP waveform for each participant from the remaining
trials. On average, the waveform was computed from
965 (SD=27) artifact-free epochs. We computed a grand-
average ERP waveform, and we analyzed the N1 at fronto-
central (Fz, FCz, and Cz) electrodes in the time-window of
84-124ms, the Tb at bilateral temporal (T7 and T8) elec-
trodes in the time-window of 124-164 ms, and the P2 at
central (FCz, Cz, and CPz) electrodes in the time-window
of 151-191 ms. We chose these electrodes to be consist-
ent with those in the literature (Crowley & Colrain, 2004;
Niidtinen & Picton, 1987; Woods, 1995), and we chose
these time-windows by centering a 40-ms time-window
around each peak on the grand-averaged ERP waveform
(Luck & Gaspelin, 2017).

2.5 | Quantifying the noise

We used three techniques for quantifying the noise in
our data. First, we computed amplitude density using
the Fast Fourier Transform (FFT). Specifically, after re-
referencing and filtering the data, we segmented the data
into 5-s epochs with 50% overlap, we excluded all epochs
with signals exceeding peak-to-peak amplitudes of 200 pV
at any EEG channel, and we computed the amplitude
density at each frequency from 1-100 Hz in 0.125 Hz steps
using the FFT. The amplitude density was averaged across
epochs, electrodes, and participants. Figure 1 shows the
grand-averaged amplitude density spectrum. Second, we
used the plus-minus averaging technique described in
Schimmel (1967). This technique removes the ERP signal
while leaving the noise by subtracting the ERP for odd-
numbered trials from the ERP for even-numbered trials
for each participant. Third, we used the standardized
measurement error (SME) technique described in Luck
et al. (2020). This technique is similar to the standard error
of measurement, except that it can be applied to a specific
time-window for each participant, yielding a measure of
precision, and then aggregated across participants to pro-
vide a measure of the quality of the data.

2.6 | Monte Carlo simulation and
statistical analysis

We used Monte Carlo methods to simulate a large num-
ber of separate experiments with different parameters by
randomly sampling (with replacement) a subset of trials
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FIGURE 1 Amplitude density as a function of frequency,
calculated from FFTs of data averaged across epochs, electrodes,
and participants.

and participants from the dataset described above. Each
experiment included a specific number of trials, which
ranged from 20-1,000 in increments of 20 trials; number
of participants, which ranged from 10-100 in increments
of five participants; and effect magnitude, which ranged
from 0-3 in increments of 0.1 pV, and used either a within-
or between-subject design. Combining these parameters
led to a total of 58,900 experiments, each of which was
repeated 1000 times. For the experiments using a within-
subject design, we sampled twice the number of trials
from each participant to simulate two experimental condi-
tions, we added half of the effect magnitude to one condi-
tion and subtracted half of the effect magnitude from the
other condition, and we tested for a statistically significant
(a=.05) effect between the two conditions at the N1, Tb,
and P2 using separate paired-samples ¢-tests (two-tailed).
For the experiments using a between-subject design, we
sampled twice the number of participants to simulate two
experimental groups, we added half of the effect magni-
tude to one group and subtracted half of the effect magni-
tude from the other group, and we tested for a statistically
significant effect between the two groups at the N1, Tb,
and P2 using separate independent-samples t-tests (two-
tailed). This approach is ideal for our purpose because it
combines real ERP data with artificially induced experi-
mental effects. To calculate statistical power, we divided
the number of significant experiments for a given set of
parameters by the total number of repetitions (i.e., 1,000).

3 | RESULTS

3.1 | ERP and noise waveforms

Figure 2a shows the grand-averaged ERP waveform as
well as the individual and grand-averaged plus-minus
waveforms at fronto-central electrodes. Consistent
with the N1 literature (N#idtinen & Picton, 1987,
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FIGURE 2 ERP waveforms and
noise. The left panels show the grand-
averaged ERP waveforms at (a) fronto-
central (Fz, FCz, and Cz), (b) bilateral
temporal (T7 and T8), and (c) central
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Plus-minus waveforms

electrodes (FCz, Cz, and CPz), showing
time (ms) on the x-axis, with 0 indicating
sound onset, and voltage (pV) on the
y-axis, with positive voltages plotted 5
upwards. The gray bars show the (a) N1,
(b) Tb, and (c) P2 time-windows. The
right panels show the individual and 5
grand-averaged plus-minus waveforms at
(a) fronto-central, (b) bilateral temporal,
and (c) central electrodes.
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Woods, 1995), the grand-averaged ERP waveform shows
a negative-going deflection starting at about 75 ms, peak-
ing at 104 ms, and returning to baseline at about 135ms.
Figure 2b shows the waveforms at bilateral temporal
electrodes. Consistent with the Tb literature (N&ditinen
& Picton, 1987; Woods, 1995), the grand-averaged ERP
waveform shows a negative-going deflection starting at
about 120 ms, peaking at 144 ms, and returning to baseline
at about 160 ms. Figure 2c shows the waveforms at central
electrodes. Consistent with the P2 literature (Crowley &
Colrain, 2004), the grand-averaged ERP waveform shows
a negative-going deflection starting at about 135ms, peak-
ing at 171 ms, and returning to baseline at about 230 ms.
The grand-averaged plus-minus waveforms at fronto-
central, bilateral temporal, and central electrodes were
approximately 0 for the duration of the epoch, indicating
that the ERP signals were successfully removed by the
plus-—-minus averaging technique, leaving only the noise
(Schimmel, 1967). The SMEs for the N1, Tb, and P2 time-
windows were 0.59, 0.55, and 0.71, respectively, which
were much smaller than the SDs, 1.64, 1.14, and 2.01,
respectively, indicating that the contribution of measure-
ment error to the observed variability across participants
was not as great as the contribution of true differences
among participants (Luck et al., 2020). That is, the dif-
ferences across individual participants is driven by true

N\ -
W 200 N300~ 400

-5

individual differences, rather than by measurement error
or poor quality of data.

3.2 | N1 simulations

Figure 3a shows the probability of obtaining a statisti-
cally significant N1 effect for within-subject designs.
Consistent with previous research (Boudewyn et al., 2018;
Gibney et al., 2020; Jensen & MacDonald, 2023; Ngiam
et al., 2021), we found that the number of trials, number
of participants, effect magnitude, and study design inter-
acted to influence statistical power. For instance, for an
effect magnitude of 0.5V, if there were 300 trials, then 75
participants were needed to obtain appropriate statistical
power (which we defined as 0.8, as is the norm in neuro-
science; Button et al., 2013; Smaldino & McElreath, 2016),
and if the number of trials was doubled to 600, then the
number of participants was reduced to 40. For an effect
magnitude of 1V, if there were 200 trials, then 30 par-
ticipants were needed to obtain appropriate statistical
power; if the number of trials was doubled to 400, then
the number of participants was reduced to 15; and if the
number of trials was doubled again to 800, then the num-
ber of participants was reduced to 10. For an effect magni-
tude of 1.5V, if there were 100 trials, then 25 participants
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(a) FIGURE 3 N1 simulations. The
100 1.0 pv distribution plots show the probability
" of obtaining a statistically significant
g 80 (a=.05) N1 effect as a function of the
Zg number of trials and participants for effect
& 60 magnitudes of 0.5, 1, 1.5, and 3V, which
; 40 are typical of those reported in the N1
€ literature, for (a) within- and (b) between-
Z 20 subject designs.
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were needed to obtain appropriate statistical power; if the
number of trials was doubled to 200, then the number of
participants was reduced to 15; and if the number of trials
was doubled again to 400, then the number of participants
was reduced to 10. For an effect magnitude of 3pV, if there
were 40 trials, then 20 participants were needed to obtain
appropriate statistical power, and if the number of trials
was doubled to 80, then the number of participants was
reduced to 10.

800 1000 200 400

600 800 1000

Figure 3b shows the probability of obtaining a statis-
tically significant N1 effect for between-subject designs.
For an effect magnitude of 0.5pV, even 1,000 trials and
100 participants were insufficient to obtain appropri-
ate statistical power. For an effect magnitude of 1pV, if
there were 200 trials, then 70 participants were needed
to obtain appropriate statistical power; if the number of
trials was doubled to 400, then the number of partici-
pants was reduced to 60; and if the number of trials was
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doubled again to 800, then the number of participants
was reduced to 50. For an effect magnitude of 1.5V, if
there were 100 trials, then 50 participants were needed
to obtain appropriate statistical power; if the number of
trials was doubled to 200, then the number of partici-
pants was reduced to 35; and if the number of trials was
doubled again to 400, then the number of participants
was reduced to 25. For an effect magnitude of 3pV, if
there were 40 trials, then 25 participants were needed to
obtain appropriate statistical power, and if the number
of trials was doubled to 80, then the number of partici-
pants was reduced to 15.

3.3 | Tb simulations
Figure 4a shows the probability of obtaining a statistically
significant Tb effect for within-subject designs. For an ef-
fect magnitude of 0.5pV, if there were 300 trials, then 65
participants were needed to obtain appropriate statistical
power, and if the number of trials was doubled to 600, then
the number of participants was reduced to 35. For an effect
magnitude of 1V, if there were 200 trials, then 25 partici-
pants were needed to obtain appropriate statistical power;
if the number of trials was doubled to 400, then the number
of participants was reduced to 15; and if the number of tri-
als was doubled again to 800, then the number of partici-
pants was reduced to 10. For an effect magnitude of 1.5pV,
if there were 100 trials, then 25 participants were needed
to obtain appropriate statistical power; if the number of tri-
als was doubled to 200, then the number of participants
was reduced to 15; and if the number of trials was doubled
again to 400, then the number of participants was reduced
to 10. For an effect magnitude of 3pV, if there were 40 tri-
als, then 15 participants were needed to obtain appropriate
statistical power, and if the number of trials was doubled
to 80, then the number of participants was reduced to 10.
Figure 4b shows the probability of obtaining a statis-
tically significant Tb effect for between-subject designs.
For an effect magnitude of 0.5pV, 880 trials and 100
participants were needed to obtain appropriate statisti-
cal power, but increasing the number of trials to 1,000
did not reduce the number of participants. For an ef-
fect magnitude of 1pV, if there were 200 trials, then 45
participants were needed to obtain appropriate statisti-
cal power; if the number of trials was doubled to 400,
then the number of participants was reduced to 35; and
if the number of trials was doubled again to 800, then
the number of participants was reduced to 30. For an
effect magnitude of 1.5pV, if there were 100 trials, then
30 participants were needed to obtain appropriate statis-
tical power; if the number of trials was doubled to 200,
then the number of participants was reduced to 20; and
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if the number of trials was doubled again to 400, then
the number of participants was reduced to 15. For an
effect magnitude of 3 pV, if there were 40 trials, then 20
participants were needed to obtain appropriate statisti-
cal power, and if the number of trials was doubled to 80,
then the number of participants was reduced to 15.

3.4 | P2simulations

Figure 5a shows the probability of obtaining a statistically
significant P2 effect for within-subject designs. For an ef-
fect magnitude of 0.5 uV, if there were 300 trials, then more
than 100 participants were needed to obtain appropriate
statistical power, and if the number of trials was doubled
to 600, then the number of participants was reduced to 55.
For an effect magnitude of 1V, if there were 200 trials,
then 45 participants were needed to obtain appropriate
statistical power; if the number of trials was doubled to
400, then the number of participants was reduced to 20;
and if the number of trials was doubled again to 800, then
the number of participants was reduced to 10. For an ef-
fect magnitude of 1.5pV, if there were 100 trials, then 40
participants were needed to obtain appropriate statistical
power; if the number of trials was doubled to 200, then the
number of participants was reduced to 20; and if the num-
ber of trials was doubled again to 400, then the number of
participants was reduced to 15. For an effect magnitude
of 3V, if there were 40 trials, then 25 participants were
needed to obtain appropriate statistical power, and if the
number of trials was doubled to 80, then the number of
participants was reduced to 15.

Figure 5b shows the probability of obtaining a statis-
tically significant P2 effect for between-subject designs.
For an effect magnitude of 0.5pV, even 1,000 trials and
100 participants were insufficient to obtain appropri-
ate statistical power. For an effect magnitude of 1pV, if
there were 200 trials, then 100 participants were needed
to obtain appropriate statistical power; if the number of
trials was doubled to 400, then the number of partici-
pants was reduced to 80; and if the number of trials was
doubled again to 800, then the number of participants
was reduced to 75. For an effect magnitude of 1.5V, if
there were 100 trials, then 65 participants were needed
to obtain appropriate statistical power; if the number of
trials was doubled to 200, then the number of partici-
pants was reduced to 50; and if the number of trials was
doubled again to 400, then the number of participants
was reduced to 40. For an effect magnitude of 3pV, if
there were 40 trials, then 30 participants were needed to
obtain appropriate statistical power, and if the number
of trials was doubled to 80, then the number of partici-
pants was reduced to 20.
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4 | DISCUSSION

In the present study, we sought to determine statistical
power for the N1, Tb, and P2 components of the ERP.
To accomplish this, we used Monte Carlo simulations
of ERP data from a passive listening task to systemati-
cally manipulate the number of trials, number of par-
ticipants, effect magnitude, and study design, resulting
in 58,900 experiments which we then repeated 1,000

times each. Consistent with Boudewyn et al. (2018),
Gibney et al. (2020), Jensen and MacDonald (2023),
and Ngiam et al. (2021), we found that the number of
trials, number of participants, effect magnitude, and
study design interacted to influence statistical power in
at least three ways. First, we found that as the number
of trials, number of participants, and effect magnitude
increased, so did statistical power. This can be seen in
Figure 3a, where statistical power for a given number
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of trials, number of participants, and effect magnitude
increased as any one of these factors also increased. This
is an important message for the neuroscience commu-
nity because it is common for researchers to estimate
(usually by relying on tradition or anecdotal evidence;
Luck, 2014) the statistical power of a study based on its
number of participants, such that studies with a small
number of participants are assumed to have low sta-
tistical power, whereas studies with a large number of
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participants are assumed to have high statistical power.
However, our results show that it is possible for a study
with a small number of participants to have high statis-
tical power if it also has a large number of trials and/or a
large effect magnitude and that it is possible for a study
with a large number of participants to have low statis-
tical power if it also has a small number of trials and/
or a small effect magnitude. That is, our results show
how studies with a small number of participants can, on
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some occasions, have more statistical power than stud-
ies with a large number of participants.

Second, we found that increasing the number of trials
had a bigger effect on statistical power for within-subject
designs than for between-subject designs. This can be seen
by comparing Figure 3a with the corresponding plots in
Figure 3b, with the former tending to reach the minimum
number of participants more often than the latter, espe-
cially for effect magnitudes smaller than or equal to 1.5 pV.
Third, we found that within-subject designs required a
smaller number of trials and participants to provide the
same level of statistical power for a given effect magni-
tude than between-subject designs. This can be seen by
comparing Figure 3a with the corresponding plots in
Figure 3b, with the former tending to provide more exam-
ples of different combinations of the number of trials and
participants in which statistical power is equal to or larger
than 0.8 than the latter, especially for effect magnitudes
smaller than or equal to 1.5pV. Importantly, our charac-
terization of the results is not specific to Figure 3, which
shows the N1 simulations; we can see the same patterns
in Figures 4 and 5, which show the Tb and P2 simulations,
respectively. Similar to Boudewyn et al. (2018), we suspect
that the reason for the differences between within- and
between-subject designs is the main source of variance:
if the main source of variance is the number of trials, as
is often the case in within-subject designs, then increas-
ing the number of trials should decrease the variance and
therefore increase statistical power. If, however, the main
source of variance is individual differences, as is often the
case in between-subject designs, then increasing the num-
ber of trials should have a smaller effect on decreasing the
variance and increasing statistical power.

As mentioned above, the key finding of the present
study is that the number of trials, number of partici-
pants, effect magnitude, and study design interacted to
influence statistical power. Consistent with previous re-
search (Boudewyn et al., 2018; Gibney et al., 2020; Jensen
& MacDonald, 2023; Ngiam et al., 2021), this shows that
there is no single answer to the question of how many tri-
als or participants are needed for an appropriately pow-
ered ERP study. Instead, the number of trials required to
obtain appropriate statistical power depends on the num-
ber of participants, effect magnitude, and study design.
Similarly, the number of participants required to obtain
appropriate statistical power depends on the number of
trials, effect magnitude, and study design. Intriguingly, it
appears as though the statistical power of an ERP study
is also influenced by the component of interest. By con-
solidating the results of Boudewyn et al. (2018), Gibney
et al. (2020), Jensen and MacDonald (2023), and Ngiam
et al. (2021), we noticed that they provided different rec-
ommendations for each of the different components. A

key difference between these studies, which could ex-
plain the different recommendations, is that they investi-
gated different components with different characteristics.
Consistent with this, in the present study, we found that
the Tb required a marginally smaller number of trials
and participants than the N1 for a given effect magnitude
and study design, which required a marginally smaller
number of trials and participants than the P2 for a given
effect magnitude and study design. This can be seen by
comparing Figures 3-5, which show the N1, Tb, and P2
simulations, respectively. This suggests that our recom-
mendations, as well as those of Boudewyn et al. (2018),
Gibney et al. (2020), Jensen and MacDonald (2023), and
Ngiam et al. (2021), might not generalize to other compo-
nents. Because of this, we strongly encourage researchers
to adopt our data-driven approach to estimating statistical
power for their component(s) of interest or use alternative
methods for estimating statistical power, such as Baker
et al's (2021) method, until data for their component(s) of
interest become available.

Even though there is no single answer to the ques-
tion of how many trials or participants are needed for an
appropriately powered ERP study, our results might be
useful for improving the robustness and reproducibility
of ERP research (Garrett-Ruffin et al., 2021; Kappenman
& Keil, 2017; Larson & Moser, 2017; Pavlov et al., 2021).
To facilitate this, we have built an online statistical
power calculator (https://bradleynjack.shinyapps.io/
ErpPowerCalculator). We encourage researchers in-
terested in the N1, Tb, and/or P2 to use this calculator
to estimate the statistical power of previous studies, as
well as help them design appropriately powered studies
in the future. Of course, it is important to acknowledge
that even though a=.05 is the norm in neuroscience
(Button et al., 2013; Smaldino & McElreath, 2016), our
recommendations will not apply to experiments using a
different threshold. To help researchers using a differ-
ent threshold (Benjamin et al., 2018; Lakens et al., 2018;
Maier & Lakens, 2022; Miller & Ulrich, 2019), our cal-
culator also estimates statistical power when a=.01,
.005, and .001. Relatedly, our recommendations should
be treated with some caution as they might not gener-
alize to situations that are significantly different to our
dataset. For example, it is unclear whether our rec-
ommendations will apply to these components when
elicited by different populations, stimuli, or paradigms
(Kappenman & Luck, 2017; Picton, 2010; Puce &
Hiamaéldinen, 2017), recorded in different environments
or by different EEG or electrode systems (Kappenman
& Luck, 2010; Laszlo et al., 2014), or computed by dif-
ferent processing and analytical pipelines (Clayson
et al., 2021; Sandre et al., 2020). Despite these limita-
tions, our recommendations are more informative for
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estimating statistical power than relying on tradition or
anecdotal evidence, and as such, may provide a platform
for the development of psychological theory (Eronen &
Bringmann, 2021; Oberauer & Lewandowsky, 2019) and
ERP biomarkers of clinical disorders (Luck et al., 2011).
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